Pulsatile influxes of H+, K+ and Ca2+ lag growth pulses of Lilium longiflorum pollen tubes
Fluxes of H+, K+ and Ca2+ were measured with self-referencing ion-selective probes, near the plasma membrane of growing Lilium longiflorum pollen tubes. Measurements from three regions around short, steady-growing tubes showed small, steady influx of H+ over the distal 40 microm and a region of the...
Gespeichert in:
Veröffentlicht in: | Journal of cell science 1999-05, Vol.112 ( Pt 10) (10), p.1497-1509 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fluxes of H+, K+ and Ca2+ were measured with self-referencing ion-selective probes, near the plasma membrane of growing Lilium longiflorum pollen tubes. Measurements from three regions around short, steady-growing tubes showed small, steady influx of H+ over the distal 40 microm and a region of the tube within 50-100 microm of the grain with larger magnitude efflux from the grain. K+ fluxes were immeasurable in short tubes. Measurements of longer tubes that were growing in a pulsatile manner revealed a pulsatile influx of both H+ and K+ at the growing tip. The average fluxes at the cell surface during the peaks of the H+ and K+ pulses were 489+/-81 and 688+/-144 pmol cm-2 second-1, respectively. Growth was measured by tracking the pollen tips with a computer vision system that achieved a spatial resolution of approximately 1/10 pixel. The high spatial resolution enabled the detection of growth, and thus the changes in growth rates, with a temporal sampling rate of 1 frame/second. These data show that the H+ and K+ pulses have a phase lag of 103+/-9 and 100+/-11 degrees, respectively, with respect to the growth pulses. Calcium fluxes were also measured in growing tubes. During steady growth, the calcium influx was relatively steady. When pulsatile growth began, the basal Ca2+ influx decreased and a pulsatile component appeared, superimposed on the reduced basal Ca2+ flux. The peaks of the Ca2+ pulses at the cell surface averaged 38.4+/-2.5 pmol cm-2 second-1. Longer tubes had large pulsatile Ca2+ fluxes with smaller baseline fluxes. The Ca2+ influx pulses had a phase lag of 123+/-9 degrees with respect to the growth pulses. |
---|---|
ISSN: | 0021-9533 1477-9137 |
DOI: | 10.1242/jcs.112.10.1497 |