The role of matrix metalloproteinase activity in the maturation of human capillary endothelial cells in vitro
Vessel maturation during angiogenesis (the formation of new blood vessels) is characterized by the deposition of new basement membrane and the downregulation of endothelial cell proliferation in the new vessels. Matrix remodeling plays a crucial, but still poorly understood role, in angiogenesis reg...
Gespeichert in:
Veröffentlicht in: | Journal of cell science 1999-05, Vol.112 ( Pt 10) (10), p.1599-1609 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Vessel maturation during angiogenesis (the formation of new blood vessels) is characterized by the deposition of new basement membrane and the downregulation of endothelial cell proliferation in the new vessels. Matrix remodeling plays a crucial, but still poorly understood role, in angiogenesis regulation. We present here a novel assay system with which to study the maturation of human capillary endothelial cells in vitro. When human dermal microvascular endothelial cells (HDMEC) were cultured in the presence of dibutyryl cAMP (Bt2) and hydrocortisone (HC), the deposition of a fibrous lattice of matrix molecules consisting of collagens type IV, type XVIII, laminin and thrombospondin was induced. In basal medium (without Bt2 and HC), HDMEC released active matrix metalloproteinases (MMPs) into the culture medium. However, MMP protein levels were significantly reduced by treatment with Bt2 and HC, while protein levels and activity of endogenous tissue inhibitor of MMPs (TIMP) increased. This shift in the proteolytic balance and matrix deposition was inhibited by the specific protein kinase A inhibitors RpcAMP and KT5720 or by substituting analogues without reported glucocorticoid activity for HC. The addition of MMP inhibitors human recombinant TIMP-1 or 1,10-phenanthroline to cultures under basal conditions induced matrix deposition in a dose-dependent manner, which was not observed with the serine protease inhibitor epsilon-amino-n-caproic acid (ACA). The deposited basement membrane-type of matrix reproducibly suppressed HDMEC proliferation and increased HDMEC adhesion to the substratum. These processes of matrix deposition and downregulation of endothelial cell proliferation, hallmarks of differentiating new capillaries in the end of angiogenesis, were recapitulated in our cell culture system by decreasing the matrix-degrading activity. These data suggest that our cell culture assay provides a simple and feasible model system for the study of capillary endothelial cell differentiation and vessel maturation in vitro. |
---|---|
ISSN: | 0021-9533 1477-9137 |
DOI: | 10.1242/jcs.112.10.1599 |