The Cystic Fibrosis Transmembrane Conductance Regulator Activates Aquaporin 3 in Airway Epithelial Cells
Enhanced osmotic water permeability has been observed in Xenopus oocytes expressing cystic fibrosis transmembrane conductance regulator (CFTR) protein. Subsequent studies have shown that CFTR activates an endogenous water permeability in oocytes, but that CFTR itself is not the water channel. Here,...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1999-04, Vol.274 (17), p.11811-11816 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Enhanced osmotic water permeability has been observed in Xenopus oocytes expressing cystic fibrosis transmembrane conductance regulator (CFTR) protein. Subsequent studies have shown that
CFTR activates an endogenous water permeability in oocytes, but that CFTR itself is not the water channel. Here, we show CFTR-dependent
activation of endogenous water permeability in normal but not in cystic fibrosis human airway epithelial cells. Cell volume
was measured by novel confocal x-z laser scanning microscopy. Glycerol uptake and antisense studies suggest CFTR-dependent
regulation of aquaporin 3 (AQP3) water channels in airway epithelial cells. Regulatory interaction was confirmed by coexpression
of CFTR and AQP3 cloned from human airways in Xenopus oocytes and of CFTR and rat AQP3 in Chinese hamster ovary cells. These findings indicate that CFTR is a regulator of AQP3
in airway epithelial cells. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.274.17.11811 |