Endothelial Nitric Oxide Synthase Gene Transfer Inhibits Human Smooth Muscle Cell Migration via Inhibition of Rho A

Smooth muscle cell (SMC) migration contributes to vascular remodeling. Nitric oxide (NO) produced via endothelial NO synthase (eNOS) inhibits SMC migration. This study analyzes signal transduction mechanisms of SMC migration targeted by NO. SMCs were cultured from human saphenous veins, and cell mig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cardiovascular pharmacology 2008-10, Vol.52 (4), p.369-374
Hauptverfasser: Largiadèr, Thomas, Eto, Masato, Payeli, Sravan K, Greutert, Helen, Viswambharan, Hema, Lachat, Mario, Zünd, Gregor, Yang, Zhihong, Tanner, Felix C, Lüscher, Thomas F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Smooth muscle cell (SMC) migration contributes to vascular remodeling. Nitric oxide (NO) produced via endothelial NO synthase (eNOS) inhibits SMC migration. This study analyzes signal transduction mechanisms of SMC migration targeted by NO. SMCs were cultured from human saphenous veins, and cell migration was studied using Boyden chambers. PDGF-BB (0.1 to 10 ng/ml) stimulated SMC migration in a concentration-dependent manner, which was inhibited by adenoviral-mediated overexpression of eNOS and by the NO donor diethylentriamine NONOate (DETANO, 10 to 10 mol/L). NO release was enhanced in eNOS-transduced SMCs, and L-NAME blunted the effect of eNOS overexpression on migration. PDGF-BB (10 ng/ml) activated Rho A, which was inhibited by the overexpression of eNOS by DETANO and by 8 bromo-cGMP. The inhibitory effect of DETANO on Rho A activity was prevented by the cGMP-dependant kinase inhibitor. Furthermore, inhibition of Rho A by C3 exoenzyme and inhibition of ROCK by Y-27632 diminished cell migration stimulated by PDGF-BB. Finally, in the cells overexpressing constitutively active ROCK mutant (CAT), DETANO failed to prevent PDGF-BB-induced SMC migration. In conclusion, NO inhibits human SMC migration via blockade of the Rho A pathway.
ISSN:0160-2446
1533-4023
DOI:10.1097/FJC.0b013e31818953d0