Local blockade of TSLP receptor alleviated allergic disease by regulating airway dendritic cells

Abstract Thymic stromal lymphopoietin (TSLP) emerges as a central mediator of T helper cell (Th)2-dominant allergic diseases. However, the role of TSLP receptor (TSLPR) in allergen-induced Th2 priming, and the effects of TSLP signaling blocking on the development of asthma remain unclear. Here we sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical immunology (Orlando, Fla.) Fla.), 2008-11, Vol.129 (2), p.202-210
Hauptverfasser: Shi, Liyun, Leu, Shaw-Wei, Xu, Feng, Zhou, Xielai, Yin, Hongping, Cai, Lingfei, Zhang, Lihuang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Thymic stromal lymphopoietin (TSLP) emerges as a central mediator of T helper cell (Th)2-dominant allergic diseases. However, the role of TSLP receptor (TSLPR) in allergen-induced Th2 priming, and the effects of TSLP signaling blocking on the development of asthma remain unclear. Here we showed that allergen challenge caused a rapid accumulation of TSLP in the airways of asthmatic mice, correlating well with eosinophils counts and interleukin (IL)-5 productions. When TSLP signaling was blocked by intratracheal administration of anti-TSLPR antibody before sensitization, eosinophilic airway inflammation, goblet cell hyperplasia and Th2 cytokines productions were significantly reduced. The alleviating effects of TSLPR blocking were achieved by inhibition of maturation and migration of airway dendritic cells (DCs), as well as their abilities of initiating CD4+T cell responses. Thus, local application of anti-TSLPR prevented Th2-mediated airway inflammation, at least partly, by regulating DCs function, which might be exploited to develop novel treatments for asthma.
ISSN:1521-6616
0090-1229
1521-7035
DOI:10.1016/j.clim.2008.07.015