Detection of the sul1, sul2, and sul3 genes in sulfonamide-resistant bacteria from wastewater and shrimp ponds of north Vietnam

To assess the presence and distribution of the sul genes ( sul1, sul2, and sul3) and plasmids in human-mediated environments of north Vietnam, we examined a total of 127 sulfonamide-resistant (SR) bacterial isolates from four shrimp ponds (HNAQs), a city canal (HNCs) and three fish ponds that receiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2008-11, Vol.405 (1), p.377-384
Hauptverfasser: Phuong Hoa, Phan Thi, Nonaka, Lisa, Hung Viet, Pham, Suzuki, Satoru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To assess the presence and distribution of the sul genes ( sul1, sul2, and sul3) and plasmids in human-mediated environments of north Vietnam, we examined a total of 127 sulfonamide-resistant (SR) bacterial isolates from four shrimp ponds (HNAQs), a city canal (HNCs) and three fish ponds that received wastewater directly from swine farms (HNPs). Results from the SR isolates revealed that sul genes were most frequently detected in the HNPs (92.0%), followed by HNCs (72.0%), and the HNAQs (43.0%). Among the sul genes detected, sul1 was the most prevalent gene in all three environments (57.0, 33.0 and 60.0% in HNPs, HNAQs, and HNCs, respectively) followed by sul2 (51.0, 19.0, and 20.0%, respectively) and sul3 (14.0, 6.0, and 8.0%, respectively). All combinations of paired different sul genes were detected, with the combination between sul1 and sul2 being the most frequent in all three environments (20.0, 8.0, and 8.0% in HNPs, HNAQs, and HNCs, respectively). The combination of three sul genes was detected at low frequencies (2–3%) in the HNPs and HNAQs, and was absent in the HNCs. The sul genes were more frequently located on the chromosome than on plasmids. The identification of SR isolates positive for the sul genes and plasmids showed that Acinetobacter was the most dominant. Our study revealed that the sul genes were common in SR bacteria from the aquatic environments we examined from northern Vietnam. Wastewater from swine farms might be “hot spots” of the sul genes and plasmids and may be reservoirs for the exchange of the sul genes among bacteria.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2008.06.023