Homogeneous Immunoassay Based on Two-Photon Excitation Fluorescence Resonance Energy Transfer
A two-photon excitable small organic molecule (abbreviated as TP-NH2) with large two-photon absorption cross section and competitive fluorescence quantum yield was prepared, which emitted fluorescence in the visible region upon excitation at 800 nm. Using the TP-NH2 molecule as an energy donor, a tw...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2008-10, Vol.80 (20), p.7735-7741 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A two-photon excitable small organic molecule (abbreviated as TP-NH2) with large two-photon absorption cross section and competitive fluorescence quantum yield was prepared, which emitted fluorescence in the visible region upon excitation at 800 nm. Using the TP-NH2 molecule as an energy donor, a two-photon excitation fluorescence resonance energy-transfer (TPE-FRET) based homogeneous immunoassay method was proposed. The donor and the acceptor (DABS-Cl, a dark quencher) were labeled to bovine serum albumin (BSA) separately, and anti-BSA protein was determined by employing an antibody bridging assay scheme. Rabbit anti-BSA serum containing other biomolecules was intentionally used as the sample to introduce interference. A parallel assay was performed using the traditional one-photon excitation FRET model, which failed to carry out quantitative determination due to the serious background luminescence arising from those biomolecules in the sample. The TPE-FRET model showed its strong ability to overcome the problem of autofluorescence and provided satisfying analytical performance. Quite good sensitivity and wide linear range (0.05−2.5 nM) for anti-BSA protein was obtained. The results of this work suggest that TPE-FRET could be a promising technique for homogeneous assays excluding separation steps, especially in complicated biological sample matrixes. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/ac801106w |