Quantum simulations of classical annealing processes

We describe a quantum algorithm that solves combinatorial optimization problems by quantum simulation of a classical simulated annealing process. Our algorithm exploits quantum walks and the quantum Zeno effect induced by evolution randomization. It requires order 1/sqrt delta steps to find an optim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2008-09, Vol.101 (13), p.130504-130504, Article 130504
Hauptverfasser: Somma, R D, Boixo, S, Barnum, H, Knill, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe a quantum algorithm that solves combinatorial optimization problems by quantum simulation of a classical simulated annealing process. Our algorithm exploits quantum walks and the quantum Zeno effect induced by evolution randomization. It requires order 1/sqrt delta steps to find an optimal solution with bounded error probability, where delta is the minimum spectral gap of the stochastic matrices used in the classical annealing process. This is a quadratic improvement over the order 1/delta steps required by the latter.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.101.130504