Immobilization-Free Sequence-Specific Electrochemical Detection of DNA Using Ferrocene-Labeled Peptide Nucleic Acid
An electrochemical method for sequence-specific detection of DNA without solid-phase probe immobilization is reported. This detection scheme starts with a solution-phase hybridization of ferrocene-labeled peptide nucleic acid (Fc-PNA) and its complementary DNA (cDNA) sequence, followed by the electr...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2008-10, Vol.80 (19), p.7341-7346 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An electrochemical method for sequence-specific detection of DNA without solid-phase probe immobilization is reported. This detection scheme starts with a solution-phase hybridization of ferrocene-labeled peptide nucleic acid (Fc-PNA) and its complementary DNA (cDNA) sequence, followed by the electrochemical transduction of Fc-PNA−DNA hybrid on indium tin oxide (ITO)-based substrates. On the bare ITO electrode, the negatively charged Fc-PNA−DNA hybrid exhibits a much reduced electrochemical signal than that of the neutral-charge Fc-PNA. This is attributed to the electrostatic repulsion between the negatively charged ITO surface and the negatively charged DNA, hindering the access of Fc-PNA−DNA to the electrode. On the contrary, when the transduction measurement is done on the ITO electrode coated with a positively charged poly(allylamine hydrochloride) (PAH) layer, the electrostatic attraction between the (+) PAH surface and the (−) Fc-PNA−DNA hybrid leads to a much higher electrochemical signal than that of the Fc-PNA. The measured electrochemical signal is proportional to the amount of cDNA present. In terms of detection sensitivity, the PAH-modified ITO platform was found to be more sensitive (with a detection limit of 40 fmol) than the bare ITO counterpart (with a detection limit of 500 fmol). At elevated temperatures, this method was able to distinguish fully matched target DNA from DNA with partial mismatches. Unpurified PCR amplicons were detected using a similar format with a detection limit down to 4.17 amol. This detection method holds great promise for single-base mismatch detection as well as electrochemistry-based detection of post-PCR products. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/ac8010236 |