The neuromuscular compartments of the flexor carpi ulnaris
After studying this article, the participant should be able to: 1. Report on the vascular supply and innervation pattern of the flexor carpi ulnaris. 2. Describe the muscle architecture of the flexor carpi ulnaris, including the physiological cross-sectional area and fiber length. 3. State the uses...
Gespeichert in:
Veröffentlicht in: | Plastic and reconstructive surgery (1963) 1999-03, Vol.103 (3), p.1046-1051 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | After studying this article, the participant should be able to: 1. Report on the vascular supply and innervation pattern of the flexor carpi ulnaris. 2. Describe the muscle architecture of the flexor carpi ulnaris, including the physiological cross-sectional area and fiber length. 3. State the uses of the flexor carpi ulnaris both for resurfacing defects in the vicinity of the elbow and in local functional tendon transfers. 4. Understand the principles of splitting skeletal muscles based on neurovascular supply to enhance its utilization in reconstructive procedures. The aim of this study was to describe the intramuscular innervation and vascular supply of the human flexor carpi ulnaris, with confirmation of findings by a similar study in the primate. Two distinct intramuscular nerve branches running parallel to each other, on either side of a central tendon, from the proximal quarter of the muscle belly to its insertion were found. The muscle could then be split into a humeral and an ulnar compartment, each with its own primary nerve branch. Perfusion studies confirmed the adequacy of circulation to the two compartments. In the primate flexor carpi ulnaris, electrical stimulation of the respective branches revealed independent contraction of each compartment. This study provides useful information for enabling the local transfer of the muscle as a whole, both for resurfacing in the vicinity of the elbow and for functional tendon transfers. It will also enable the transfer of the muscle as one or two separate compartments (for resurfacing, in tendon transfers for muscle paralysis, congenital defects, and muscle defects resulting from trauma, and after resections for neoplasm and infection). |
---|---|
ISSN: | 0032-1052 |
DOI: | 10.1097/00006534-199903000-00048 |