Optogenetic analysis of synaptic function

Using both behavioral and electrophysiological readouts, Channelrhodopsin-2, a light-gated cation channel, is applied to the study of synaptic function in Caenorhabditis elegans . We introduce optogenetic investigation of neurotransmission (OptIoN) for time-resolved and quantitative assessment of sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2008-10, Vol.5 (10), p.895-902
Hauptverfasser: Gottschalk, Alexander, Liewald, Jana F, Brauner, Martin, Stephens, Greg J, Bouhours, Magali, Schultheis, Christian, Zhen, Mei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using both behavioral and electrophysiological readouts, Channelrhodopsin-2, a light-gated cation channel, is applied to the study of synaptic function in Caenorhabditis elegans . We introduce optogenetic investigation of neurotransmission (OptIoN) for time-resolved and quantitative assessment of synaptic function via behavioral and electrophysiological analyses. We photo-triggered release of acetylcholine or γ-aminobutyric acid at Caenorhabditis elegans neuromuscular junctions using targeted expression of Chlamydomonas reinhardtii Channelrhodopsin-2. In intact Channelrhodopsin-2 transgenic worms, photostimulation instantly induced body elongation (for γ-aminobutyric acid) or contraction (for acetylcholine), which we analyzed acutely, or during sustained activation with automated image analysis, to assess synaptic efficacy. In dissected worms, photostimulation evoked neurotransmitter-specific postsynaptic currents that could be triggered repeatedly and at various frequencies. Light-evoked behaviors and postsynaptic currents were significantly ( P ≤ 0.05) altered in mutants with pre- or postsynaptic defects, although the behavioral phenotypes did not unambiguously report on synaptic function in all cases tested. OptIoN facilitates the analysis of neurotransmission with high temporal precision, in a neurotransmitter-selective manner, possibly allowing future investigation of synaptic plasticity in C. elegans .
ISSN:1548-7091
1548-7105
DOI:10.1038/nmeth.1252