Microemboli Generation, Detection and Characterization During CPB Procedures in Neonates, Infants, and Small Children
In our laboratory, we study different factors that influence the microemboli counts in the extracorporeal circuit using a simulated pediatric cardiopulmonary bypass (CPB) model identical to the one used in our operating rooms. For monitoring and classification of microemboli, we use the novel Emboli...
Gespeichert in:
Veröffentlicht in: | ASAIO journal (1992) 2008-09, Vol.54 (5), p.486-490 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In our laboratory, we study different factors that influence the microemboli counts in the extracorporeal circuit using a simulated pediatric cardiopulmonary bypass (CPB) model identical to the one used in our operating rooms. For monitoring and classification of microemboli, we use the novel Emboli Detection and Classification (EDAC) Quantifier system which allows for real-time monitoring, localization, and size characterization of microemboli as small as 10 μm. Our results show that high flow rates, low perfusate temperature, use of vacuum assisted venous drainage (VAVD), use of roller pump, and pulsatile flow results in higher microemboli counts at postpump site. Microemboli counts at postoxygenator, and postfilter sites are significantly less. This indicates that hollow fiber membrane oxygenator was able to remove most of the microemboli, and an opened arterial filter purge line augments the removal of microemboli that were not captured by the oxygenator. Majority of the microemboli detected at all sites were |
---|---|
ISSN: | 1058-2916 1538-943X |
DOI: | 10.1097/MAT.0b013e3181857e6a |