Cortical lesions in multiple sclerosis

Although previous studies have shown that the lesions of multiple sclerosis may involve the cerebral cortex, there is little published research on the prevalence and distribution of such lesions. Using neuropathological techniques and MRI, a series of studies has been undertaken in order to assess t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain (London, England : 1878) England : 1878), 1999, Vol.122 (1), p.17-26
Hauptverfasser: KIDD, D, BARKHOF, F, MCCONNELL, R, ALGRA, P. R, ALLEN, I. V, REVESZ, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although previous studies have shown that the lesions of multiple sclerosis may involve the cerebral cortex, there is little published research on the prevalence and distribution of such lesions. Using neuropathological techniques and MRI, a series of studies has been undertaken in order to assess this, in particular to identify their relationship to cortical veins. A serial MRI study showed that the use of gadolinium proffered an increase in cortical lesion detection of 140% and showed that 26% of active lesions arose within or adjacent to the cortex. In a post-mortem study, MRI under-reported lesions subsequently analysed neuropathologically, particularly those arising within the cortex. In a further 12 cases examined, 478 cortical lesions were identified, of which 372 also involved the subcortical white matter. Seven different lesion types were identified; the majority arose within the territory of the principal cortical veins, whilst the remaining quarter arose within the territory of the small branch or superficial veins. Small cortical lesions are common in multiple sclerosis and are under-reported by MRI. Investigation of the cortical venous supply shows how such lesions may arise, and why the majority also involve the underlying white matter.
ISSN:0006-8950
1460-2156
DOI:10.1093/brain/122.1.17