A vitamin E-deficient diet affects nerve regeneration in rats
Degenerative changes in the neuromuscular system have been found in animals and humans with vitamin E (E) deficiency. This morphologic study examined the effect of dietary E on the regeneration of peripheral nerves in male Sprague-Dawley rats. After feeding an E-sufficient diet ( dl-α-tocopheryl ace...
Gespeichert in:
Veröffentlicht in: | Nutrition (Burbank, Los Angeles County, Calif.) Los Angeles County, Calif.), 1999-02, Vol.15 (2), p.140-144 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Degenerative changes in the neuromuscular system have been found in animals and humans with vitamin E (E) deficiency. This morphologic study examined the effect of dietary E on the regeneration of peripheral nerves in male Sprague-Dawley rats. After feeding an E-sufficient diet (
dl-α-tocopheryl acetate 50 mg/kg diet) for 6 d, 24 rats were randomly and equally assigned to one of three groups: control (CTRL) fed an E-sufficient diet for 43 d without surgery, normal (NE) fed an E-sufficient diet, or low (LE) fed an E-deficient diet (
dl-α-tocopheryl acetate 0 mg/kg diet). After 22 d of feeding, NE and LE had surgical compression of the right sciatic nerve and continued eating for 15 d. On day 43, the right triceps surae muscles and a segment of the right sciatic nerve were removed, then all rats were euthanized. The nerve and muscles were processed for morphologic analyses. Presurgery and postsurgery LE ate less food (
P < 0.048 and
P < 0.001, respectively), which resulted in a lower body weight gain (
P < 0.0002). LE had irregularly shaped and less myelinated axons than NE (
P < 0.0001) and CTRL (
P < 0.0001). The LE plantaris muscle had less type II fibers when compared with NE (
P < 0.007) and CTRL (
P < 0.03). The results suggest that an E-deficient diet affects food intake, impairs nerve regeneration, and decreases type II fibers, whereas an E-sufficient diet contributes to normal axon regeneration. |
---|---|
ISSN: | 0899-9007 1873-1244 |
DOI: | 10.1016/S0899-9007(98)00167-1 |