Role of angiotensin II, endothelin-1 and L-type calcium channel in the development of glomerular, tubulointerstitial and perivascular fibrosis

Fibrosis is a hallmark of renal damage in several diseases, including arterial hypertension. We, therefore, investigated the role of angiotensin II, endothelin-1 and of L-type calcium channels in the development of the glomerular, vascular, and tubulointerstitial fibrosis in a model of severe angiot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hypertension 2008-10, Vol.26 (10), p.2022-2029
Hauptverfasser: SECCIA, Teresa M, MANIERO, Carmen, BELLONI, Anna S, GUIDOLIN, Diego, POTHEN, Poulose, PESSINA, Achille C, PAOLO ROSSI, Gian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fibrosis is a hallmark of renal damage in several diseases, including arterial hypertension. We, therefore, investigated the role of angiotensin II, endothelin-1 and of L-type calcium channels in the development of the glomerular, vascular, and tubulointerstitial fibrosis in a model of severe angiotensin II-dependent hypertension. Five-week-old Ren-2 transgenic rats (TGRen2) received for 4 weeks a placebo, bosentan (100 mg/kg body weight), irbesartan (50 mg/kg body weight), the ETA-selective endothelin receptor antagonist BMS-182874 (BMS; 52 mg/kg body weight), the combination of irbesartan (50 mg/kg body weight) plus BMS (52 mg/kg body weight), and nifedipine (30 mg/kg body weight). Glomerular volume, tubulointerstitial fibrosis, glomerular, and perivascular fibrosis were accurately quantified by histomorphometry in four-to-six sections per kidney. Glomerular fibrosis was lowered by BMS (P < 0.001), whereas tubulointerstitial fibrosis was blunted by bosentan (P < 0.001) and irbesartan (P < 0.005). Perivascular fibrosis was reduced by nifedipine and BMS. As only irbesartan and irbesartan plus BMS decreased blood pressure (P < 0.001 vs. placebo), these effects on fibrosis were independent of blood pressure. Angiotensin II and L-type calcium channels modulate fibrosis selectively in the tubulointerstitial and in the perivascular compartments, respectively. The prevention of fibrosis with ET-1 receptor antagonism in all three compartments supports a major role of ET-1 in the development of renal fibrosis.
ISSN:0263-6352
1473-5598
DOI:10.1097/HJH.0b013e328309f00a