Spatial Organization of Four hnRNP Proteins in Relation to Sites of Transcription, to Nuclear Speckles, and to Each Other in Interphase Nuclei and Nuclear Matrices of HeLa Cells

RNA polymerase II transcripts are complexed with heterogeneous nuclear ribonucleoprotein (hnRNP) proteins. These proteins are involved in several aspects of the maturation and transport of hnRNA. We performed a detailed study of the spatial distribution of four hnRNP proteins (hnRNP C, I, L, and U)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental cell research 1999-02, Vol.246 (2), p.461-470
Hauptverfasser: Mattern, Karin A., van der Kraan, Ineke, Schul, Wouter, de Jong, Luitzen, van Driel, Roel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:RNA polymerase II transcripts are complexed with heterogeneous nuclear ribonucleoprotein (hnRNP) proteins. These proteins are involved in several aspects of the maturation and transport of hnRNA. We performed a detailed study of the spatial distribution of four hnRNP proteins (hnRNP C, I, L, and U) in HeLa nuclei, using immunofluorescent labeling and confocal microscopy. Despite the fact that hnRNP proteins have been shown to coimmunoprecipitate, a hallmark of hnRNP proteins, we find that hnRNP C, I, and L have a spatial nuclear distribution that is not related to that of hnRNP U. We also examined the distribution of hnRNP proteins in relation to that of nascent transcripts. The four hnRNP proteins that we examined are not enriched at sites of RNA synthesis. Using antibodies against the nuclear poly(A)-binding protein (PAB II) we investigated the relationship between the distribution of hnRNP proteins and that of nuclear domains (nuclear speckles) that are enriched in splicing factors, poly(A)+RNA, and PAB II. We found that the four hnRNP proteins are not enriched in these domains. This indicates that the poly(A)+RNA, present in high concentration in speckles, is not complexed with these hnRNP proteins. This is in agreement with the notion that poly(A)+RNA in speckles is different from ordinary hnRNA. Previously, we have shown that hnRNP proteins are the major protein components of the fibrogranular internal nuclear matrix (K. A. Matternet al.(1996)J. Cell. Biochem.62, 275–289; K. A. Matternet al.(1997)J. Cell. Biochem.65, 42–52). We observed that in nuclear matrices the spatial distributions of the four hnRNP proteins, like that of nascent RNA and PAB II, are essentially the same as observed in intact nuclei. Moreover, also in nuclear matrix preparations, like in intact nuclei, nascent RNA and PAB II have spatial distributions that differ from those of hnRNP proteins. Our results are compatible with the notion that hnRNP proteins are able to form complexes of many different, probably overlapping, compositions.
ISSN:0014-4827
1090-2422
DOI:10.1006/excr.1998.4267