Rho-associated Kinase of Chicken Gizzard Smooth Muscle
Rho-associated kinase (Rho-kinase) from chicken gizzard smooth muscle was purified to apparent homogeneity (160 kDa on SDS-polyacrylamide gel electrophoresis) and identified as the ROKα isoform. Several substrates were phosphorylated. Rates with myosin phosphatase target subunit 1 (MYPT1), myosin, a...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1999-02, Vol.274 (6), p.3744-3752 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rho-associated kinase (Rho-kinase) from chicken gizzard smooth muscle was purified to apparent homogeneity (160 kDa on SDS-polyacrylamide gel electrophoresis) and identified as the ROKα isoform. Several substrates were phosphorylated. Rates with myosin phosphatase target subunit 1 (MYPT1), myosin, and the 20-kDa myosin light chain were higher than other substrates. Thiophosphorylation of MYPT1 inhibited myosin phosphatase activity. Phosphorylation of myosin at serine 19 increased actin-activated Mg+-ATPase activity, i.e. similar to myosin light chain kinase. Myosin phosphorylation was increased at higher ionic strengths, possibly by formation of 6 S myosin. Phosphorylation of the isolated light chain and myosin phosphatase was decreased by increasing ionic strength. Rho-kinase was stimulated 1.5–2-fold by guanosine 5′-O-3-(thio)triphosphate·RhoA, whereas limited tryptic hydrolysis caused a 5–6-fold activation, independent of RhoA. Several kinase inhibitors were screened and most effective were Y-27632, staurosporine, and H-89. Several lipids caused slight activation of Rho-kinase, but arachidonic acid (30–50 μm) induced a 5–6-fold activation, independent of RhoA. These results suggest that Rho-kinase of smooth muscle may be involved in the contractile process via phosphorylation of MYPT1 and myosin. Activation by arachidonic acid presents a possible regulatory mechanism for Rho-kinase. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.274.6.3744 |