Microsatellite primers for studies of gene flow and mating systems in white-eyes (Zosterops)
The palaeotropical passerine family Zosteropidae (white-eyes) comprises some 85 species, 63 in the genus Zosterops. The family contains an extraordinary number of island colonizers, many showing substantial shifts in morphology and ecology (Mees 1969). The silvereye, Zosterops lateralis, has been a...
Gespeichert in:
Veröffentlicht in: | Molecular ecology 1999-01, Vol.8 (1), p.159-160 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The palaeotropical passerine family Zosteropidae (white-eyes) comprises some 85 species, 63 in the genus Zosterops. The family contains an extraordinary number of island colonizers, many showing substantial shifts in morphology and ecology (Mees 1969). The silvereye, Zosterops lateralis, has been a particularly successful colonizer of islands of the Southwest Pacific Ocean, over a timescale ranging from very recently to hundreds of thousands of years ago. This provides an excellent system for studying evolutionary change on islands. For example, the Capricorn silver-eye Z. lateralis chlorocephala, found on wooded coral cays of the southern Great Barrier Reef (Kikkawa 1976), has substantially morphologically diverged from its mainland source in just a few thousand years (Kikkawa 1976; Degnan 1993), and has been the subject of a long-term study of evolutionary change (Kikkawa 1987). To assess the genetic consequences of colonization by silver-eyes, we were interested in assaying rapidly evolving microsatellite loci. This work would complement and expand upon our previous studies using minisatellite loci (Degnan 1993). Our aim was that the same microsatellites would also permit high resolution of parent-offspring relationships (e.g. Robertson 1997). |
---|---|
ISSN: | 0962-1083 |