The preprotein translocase of the mitochondrial inner membrane: function and evolution

Growing mitochondria acquire most of their proteins by the uptake of mitochondrial preproteins from the cytosol. To mediate this protein import, both mitochondrial membranes contain independent protein transport systems: the Tom machinery in the outer membrane and the Tim machinery in the inner memb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 1999-02, Vol.286 (1), p.105-120
Hauptverfasser: Rassow, Joachim, Dekker, Peter J.T, van Wilpe, Sandra, Meijer, Michiel, Soll, Jürgen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Growing mitochondria acquire most of their proteins by the uptake of mitochondrial preproteins from the cytosol. To mediate this protein import, both mitochondrial membranes contain independent protein transport systems: the Tom machinery in the outer membrane and the Tim machinery in the inner membrane. Transport of proteins across the inner membrane and sorting to the different inner mitochondrial compartments is mediated by several protein complexes which have been identified in the past years. A complex containing the integral membrane proteins Tim17 and Tim23 constitutes the import channel for preproteins containing amino-terminal hydrophilic presequences. This complex is associated with Tim44 which serves as an adaptor protein for the binding of mtHsp70 to the membrane. mtHsp70, a 70 kDa heat shock protein of the mitochondrial matrix, drives the ATP-dependent import reaction of the processed preprotein after cleavage of the presequence. Preproteins containing internal targeting information are imported by a separate import machinery, which consists of the intermembrane-space proteins Tim9, Tim10, and Tim12, and the inner membrane proteins Tim22 and Tim54. The proteins Tim17, Tim22, and Tim23 have in common a similar topology in the membrane and a homologous amino acid sequence. Moreover, they show a sequence similarity to OEP16, a channel-forming amino acid transporter in the outer envelope of chloroplasts, and to LivH, a component of a prokaryotic amino acid permease, defining a new PRAT-family of pr eprotein and a mino acid t ransporters.
ISSN:0022-2836
1089-8638
DOI:10.1006/jmbi.1998.2455