Simultaneous assessment of cerebral hemodynamics and contrast agent uptake in lesions with disrupted blood– brain–barrier
The purpose of this study was to develop a method that eliminates the influence of the T1 relaxation time upon the signal-time course in perfusion-weighted imaging of cerebral lesions with blood–brain–barrier (BBB) disruption. On a 1.5 T whole body clinical magnetic resonance (MR) imager, we impleme...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance imaging 1999-01, Vol.17 (1), p.21-27 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The purpose of this study was to develop a method that eliminates the influence of the T1 relaxation time upon the signal-time course in perfusion-weighted imaging of cerebral lesions with blood–brain–barrier (BBB) disruption.
On a 1.5 T whole body clinical magnetic resonance (MR) imager, we implemented a dual-echo RF-spoiled FLASH sequence (TE = 6/23.6 ms). We developed a postprocessing routine that allowed to calculate a signal-time course representing only the change in T2∗ and another one representing only the change in T1. Using this method, we examined 7 patients with various brain lesions showing evidence of BBB disruption. In the signal-time-curves obtained from the early echo we found a distinct signal drop due to the T2∗ effect. These effects could be eliminated by the correction algorithm yielding a 67% higher signal increase. Correction of the signal-time curve of the late echo yielded a more pronounced maximum signal drop and a decrease in postcontrast signal intensity. We found that without this correction the relative regional cerebral blood volume and the first moment of the concentration-time curve were underestimated by 72% and 22%, respectively. The dual echo-sequence combined with the postprocessing algorithm separates T1 and T2∗ effects and thus allows to assess cerebral hemodynamics and contrast agent kinetics simultaneously. This method may be a useful tool for characterizing, staging, and therapy monitoring of brain tumors. |
---|---|
ISSN: | 0730-725X 1873-5894 |
DOI: | 10.1016/S0730-725X(98)00149-0 |