Assessment of PTEN tumor suppressor activity in nonmammalian models: the year of the yeast
Model organisms have emerged as suitable and reliable biological tools to study the properties of proteins whose function is altered in human disease. In the case of the PI3K and PTEN human cancer-related proteins, several vertebrate and invertebrate models, including mouse, fly, worm and amoeba, ha...
Gespeichert in:
Veröffentlicht in: | Oncogene 2008-09, Vol.27 (41), p.5431-5442 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Model organisms have emerged as suitable and reliable biological tools to study the properties of proteins whose function is altered in human disease. In the case of the PI3K and PTEN human cancer-related proteins, several vertebrate and invertebrate models, including mouse, fly, worm and amoeba, have been exploited to obtain relevant functional information that has been conserved from these organisms to humans along evolution. The yeast
Saccharomyces cerevisiae
is an eukaryotic unicellular organism that lacks a canonical mammalian-like PI3K/PTEN pathway and PIP3 as a physiological second messenger, PIP2 being essential for its life. The mammalian PI3K/PTEN pathway can be reconstituted in
S. cerevisiae,
generating growth alteration phenotypes that can be easily monitored to perform
in vivo
functional analysis of the molecular constituents of this pathway. Here, we review the current nonmammalian model systems to study PTEN function, summarize our knowledge of PTEN orthologs in yeast species and propose the yeast
S. cerevisiae
as a sensitive biological sensor of PI3K oncogenicity and PTEN tumor suppressor activity. |
---|---|
ISSN: | 0950-9232 1476-5594 |
DOI: | 10.1038/onc.2008.240 |