A contractile activity that closes phagosomes in macrophages

Studies of Fc-mediated phagocytosis by mouse macrophages identified a contractile activity at the distal margins of forming phagosomes. Time-lapse video microscopic analysis of macrophages containing rhodamine-labeled actin and fluorescein dextran showed that actin was concentrated at the distal mar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cell science 1999-02, Vol.112 ( Pt 3) (3), p.307-316
Hauptverfasser: Swanson, J A, Johnson, M T, Beningo, K, Post, P, Mooseker, M, Araki, N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Studies of Fc-mediated phagocytosis by mouse macrophages identified a contractile activity at the distal margins of forming phagosomes. Time-lapse video microscopic analysis of macrophages containing rhodamine-labeled actin and fluorescein dextran showed that actin was concentrated at the distal margins of closing phagosomes. Phagocytosis-related contractile activities were observed when one IgG-opsonized erythrocyte was engaged by two macrophages. Both cells extended pseudopodia until they met midway around the erythrocyte. It was then constricted and pulled into two phagosomes, which remained interconnected by a string of erythrocyte membrane. Butanedione monoxime, an uncompetitive inhibitor of class II and perhaps other myosins, and wortmannin and LY294002, inhibitors of phosphoinositide 3-kinase, prevented the constrictions without inhibiting the initial pseudopod extension. Immunofluorescence microscopy showed the presence of myosins IC, II, V and IXb in phagosomes. Of these, only myosin IC was concentrated around the strings connecting shared erythrocytes, suggesting that myosin IC mediates the purse-string-like contraction that closes phagosomes. The sequential processes of pseudopod extension and contraction can explain how macropinosomes and spacious phagosomes form without guidance from a particle surface.
ISSN:0021-9533
1477-9137
DOI:10.1242/jcs.112.3.307