Bioequivalence of dietary α-linolenic and docosahexaenoic acids as sources of docosahexaenoate accretion in brain and associated organs of neonatal baboons
The dietary bioequivalence of alpha-linolenic (LNA) and docosahexaenoic acids (DHA) as substrates for brain and retinal n-3 fatty acid accretion during the brain growth spurt is reported for neonatal baboons who consumed a long-chain-polyunsaturate free commercial human infant formula with a n-6/n-3...
Gespeichert in:
Veröffentlicht in: | Pediatric research 1999, Vol.45 (1), p.87-93 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The dietary bioequivalence of alpha-linolenic (LNA) and docosahexaenoic acids (DHA) as substrates for brain and retinal n-3 fatty acid accretion during the brain growth spurt is reported for neonatal baboons who consumed a long-chain-polyunsaturate free commercial human infant formula with a n-6/n-3 ratio of 10:1. Neonates received oral doses of 13C-labeled fatty acids (LNA*) or (DHA*) at 4 wk of age, and at 6 wk brain (occipital cortex), retina, retinal pigment epithelium, liver, erythrocytes, and plasma were analyzed. In the brain, 1.71% of the preformed DHA* dose was detected, whereas 0.23% of the LNA* dose was detected as DHA*, indicating that preformed DHA is 7-fold more effective than LNA-derived DHA as a source for DHA accretion. In LNA*-dosed animals, DHA* was greater than 60% of labeled fatty acids in all tissues except erythrocytes, where docosapentaenoic acid was 55%. Estimates using dietary LNA levels as tracees indicate that brain turnover of DHA is less than 5% per week between weeks 4 and 6 of life. For retina and retinal pigment epithelium, preformed DHA was at levels 12-fold and 15-fold greater than LNA-derived DHA. Liver, plasma, and erythrocytes ratios were 27, 29, and 51, respectively, showing that these pools do not parallel tissue metabolism of a single dose of omega-3 fatty acids. The distributions of labeled fatty acids for LNA*-dosed animals were similar, in the order DHA > DPA > EPA > LNA, except for erythrocytes where docosapentaenoic acid predominated. These are the first direct measurements of the bioequivalence of DHA and LNA in neonatal primate brain and associated tissues. |
---|---|
ISSN: | 0031-3998 1530-0447 |
DOI: | 10.1203/00006450-199901000-00015 |