Thermally induced denaturation and aggregation of BLG-A: effect of the Cu(2+) and Zn (2+) metal ions

There is growing evidence that metal ions can accelerate the aggregation process of several proteins. This process, associated with several neuro-degenerative diseases, has been reported also for non-pathological proteins. In the present work, the effects of copper and zinc ions on the denaturation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European biophysics journal 2008-10, Vol.37 (8), p.1351-1360
Hauptverfasser: Stirpe, A, Rizzuti, B, Pantusa, M, Bartucci, R, Sportelli, L, Guzzi, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is growing evidence that metal ions can accelerate the aggregation process of several proteins. This process, associated with several neuro-degenerative diseases, has been reported also for non-pathological proteins. In the present work, the effects of copper and zinc ions on the denaturation and aggregation processes of beta-lactoglobulin A (BLG-A) are investigated by differential scanning calorimetry (DSC), fluorescence, electron paramagnetic resonance (EPR) and optical density. The DSC profiles reveal that the thermal behaviour of BLG-A is a complex process, strongly dependent on the protein concentration. For concentrations 0.13 mM an exothermic peak also appears, above 90 degrees C, related to the aggregation of the denaturated BLG-A molecules. The thioflavin T fluorescence indicates that the thermally induced aggregates show fibrillar features. The presence of either equimolar Cu(2+) or Zn(2+) ions in the protein solution has different effects. In particular, copper binds to the protein in the native state, as evidenced by EPR experiments, and destabilizes BLG-A by decreasing the denaturation temperature by about 10 degrees C, whereas zinc ions probably perturb the partially denaturated state of the protein. The kinetics of BLG-A aggregation shows that both metal ions abolish the lag phase before the aggregation starts. Moreover, the rate of the process is 4.6-fold higher in the presence of copper, whereas the effect of zinc is negligible. The increase of the aggregation rate, induced by copper, may be due to a site-specific binding of the metal ion on the protein.
ISSN:0175-7571
DOI:10.1007/s00249-008-0346-4