Nanofabricated Concentric Ring Structures by Templated Self-Assembly of a Diblock Copolymer
The formation of well-controlled circular patterns on the nanoscale is important for the fabrication of a range of devices such as sensors, memories, lasers, transistors, and quantum devices. Concentric, smooth ring patterns with tunable dimensions have been formed from a cylinder-forming poly(styre...
Gespeichert in:
Veröffentlicht in: | Nano letters 2008-09, Vol.8 (9), p.2975-2981 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The formation of well-controlled circular patterns on the nanoscale is important for the fabrication of a range of devices such as sensors, memories, lasers, transistors, and quantum devices. Concentric, smooth ring patterns with tunable dimensions have been formed from a cylinder-forming poly(styrene-b-dimethylsiloxane) (PS-PDMS) diblock copolymer under confinement in shallow circular trenches. The high etch selectivity between PS and PDMS facilitates pattern transfer, illustrated by the fabrication of arrays of ferromagnetic cobalt rings with a density of 1.1 × 109/cm2. The effects of confinement diameter and commensurability on the diameter and period of the concentric rings are analyzed using a free energy model that includes interfacial, strain, and bending energies. This work provides a simple process for the fabrication of nanoscale circular patterns with very narrow line width using a much coarser-scale template, and may facilitate the miniaturization of a variety of microelectronic devices. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/nl802011w |