Lévy random walks with fluctuating step number and multiscale behavior
Random walks with step number fluctuations are examined in n dimensions for when step lengths comprising the walk are governed by stable distributions, or by random variables having power-law tails. When the number of steps taken in the walk is large and uncorrelated, the conditions of the Lévy-Gned...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics Statistical physics, plasmas, fluids, and related interdisciplinary topics, 1999-11, Vol.60 (5 Pt A), p.5327-5343 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5343 |
---|---|
container_issue | 5 Pt A |
container_start_page | 5327 |
container_title | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics |
container_volume | 60 |
creator | Hopcraft, K I Jakeman, E Tanner, R M |
description | Random walks with step number fluctuations are examined in n dimensions for when step lengths comprising the walk are governed by stable distributions, or by random variables having power-law tails. When the number of steps taken in the walk is large and uncorrelated, the conditions of the Lévy-Gnedenko generalization of the central limit theorem obtain. When the number of steps is correlated, infinitely divisible limiting distributions result that can have Lévy-like behavior in their tails but can exhibit a different power law at small scales. For the special case of individual steps in the walk being Gaussian distributed, the infinitely divisible class of K distributions result. The convergence to limiting distributions is investigated and shown to be ultraslow. Random walks formed from a finite number of steps modify the behavior and naturally produce an inner scale. The single class of distributions derived have as special cases, K distributions, stable distributions, distributions with power-law tails, and those characteristic of high and low frequency cascades. The results are compared with cellular automata simulations that are claimed to be paradigmatic of self-organized critical systems. |
doi_str_mv | 10.1103/PhysRevE.60.5327 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69527405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69527405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-58a9d688fa432c69049d657f39648355538d51b29ed42619c56f6b042040d7713</originalsourceid><addsrcrecordid>eNpFkM1KAzEUhYMotlb3riQrd1NvkkkyWUqpVSgoouAuZGYydnR-ajKZ0kfyOXwxp7Ti3dx74ZzD4UPoksCUEGA3T6utf7b9fCpgyhmVR2hMQPGIyUQe727BIsHJ2widef8BwxCAUzQiREmIgY7RYvnz3W-xM03e1nhjqk-PN2W3wkUVsi6Yrmzese_sGjehTq3DgxDXoepKn5nK4tSuTF-27hydFKby9uKwJ-j1bv4yu4-Wj4uH2e0yyqjiXcQTo3KRJIWJGc2Egnh4uSyYEnHCOOcsyTlJqbJ5TAVRGReFSCGmQ9tcSsIm6Hqfu3btV7C-0_XQxFaVaWwbvBaKUxkDH4SwF2au9d7ZQq9dWRu31QT0Dp7-g6cF6B28wXJ1yA5pbfN_w4EW-wWLPWvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69527405</pqid></control><display><type>article</type><title>Lévy random walks with fluctuating step number and multiscale behavior</title><source>American Physical Society Journals</source><creator>Hopcraft, K I ; Jakeman, E ; Tanner, R M</creator><creatorcontrib>Hopcraft, K I ; Jakeman, E ; Tanner, R M</creatorcontrib><description>Random walks with step number fluctuations are examined in n dimensions for when step lengths comprising the walk are governed by stable distributions, or by random variables having power-law tails. When the number of steps taken in the walk is large and uncorrelated, the conditions of the Lévy-Gnedenko generalization of the central limit theorem obtain. When the number of steps is correlated, infinitely divisible limiting distributions result that can have Lévy-like behavior in their tails but can exhibit a different power law at small scales. For the special case of individual steps in the walk being Gaussian distributed, the infinitely divisible class of K distributions result. The convergence to limiting distributions is investigated and shown to be ultraslow. Random walks formed from a finite number of steps modify the behavior and naturally produce an inner scale. The single class of distributions derived have as special cases, K distributions, stable distributions, distributions with power-law tails, and those characteristic of high and low frequency cascades. The results are compared with cellular automata simulations that are claimed to be paradigmatic of self-organized critical systems.</description><identifier>ISSN: 1063-651X</identifier><identifier>EISSN: 1095-3787</identifier><identifier>DOI: 10.1103/PhysRevE.60.5327</identifier><identifier>PMID: 11970402</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 1999-11, Vol.60 (5 Pt A), p.5327-5343</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-58a9d688fa432c69049d657f39648355538d51b29ed42619c56f6b042040d7713</citedby><cites>FETCH-LOGICAL-c295t-58a9d688fa432c69049d657f39648355538d51b29ed42619c56f6b042040d7713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11970402$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hopcraft, K I</creatorcontrib><creatorcontrib>Jakeman, E</creatorcontrib><creatorcontrib>Tanner, R M</creatorcontrib><title>Lévy random walks with fluctuating step number and multiscale behavior</title><title>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</title><addtitle>Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics</addtitle><description>Random walks with step number fluctuations are examined in n dimensions for when step lengths comprising the walk are governed by stable distributions, or by random variables having power-law tails. When the number of steps taken in the walk is large and uncorrelated, the conditions of the Lévy-Gnedenko generalization of the central limit theorem obtain. When the number of steps is correlated, infinitely divisible limiting distributions result that can have Lévy-like behavior in their tails but can exhibit a different power law at small scales. For the special case of individual steps in the walk being Gaussian distributed, the infinitely divisible class of K distributions result. The convergence to limiting distributions is investigated and shown to be ultraslow. Random walks formed from a finite number of steps modify the behavior and naturally produce an inner scale. The single class of distributions derived have as special cases, K distributions, stable distributions, distributions with power-law tails, and those characteristic of high and low frequency cascades. The results are compared with cellular automata simulations that are claimed to be paradigmatic of self-organized critical systems.</description><issn>1063-651X</issn><issn>1095-3787</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNpFkM1KAzEUhYMotlb3riQrd1NvkkkyWUqpVSgoouAuZGYydnR-ajKZ0kfyOXwxp7Ti3dx74ZzD4UPoksCUEGA3T6utf7b9fCpgyhmVR2hMQPGIyUQe727BIsHJ2widef8BwxCAUzQiREmIgY7RYvnz3W-xM03e1nhjqk-PN2W3wkUVsi6Yrmzese_sGjehTq3DgxDXoepKn5nK4tSuTF-27hydFKby9uKwJ-j1bv4yu4-Wj4uH2e0yyqjiXcQTo3KRJIWJGc2Egnh4uSyYEnHCOOcsyTlJqbJ5TAVRGReFSCGmQ9tcSsIm6Hqfu3btV7C-0_XQxFaVaWwbvBaKUxkDH4SwF2au9d7ZQq9dWRu31QT0Dp7-g6cF6B28wXJ1yA5pbfN_w4EW-wWLPWvw</recordid><startdate>19991101</startdate><enddate>19991101</enddate><creator>Hopcraft, K I</creator><creator>Jakeman, E</creator><creator>Tanner, R M</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19991101</creationdate><title>Lévy random walks with fluctuating step number and multiscale behavior</title><author>Hopcraft, K I ; Jakeman, E ; Tanner, R M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-58a9d688fa432c69049d657f39648355538d51b29ed42619c56f6b042040d7713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Hopcraft, K I</creatorcontrib><creatorcontrib>Jakeman, E</creatorcontrib><creatorcontrib>Tanner, R M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hopcraft, K I</au><au>Jakeman, E</au><au>Tanner, R M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lévy random walks with fluctuating step number and multiscale behavior</atitle><jtitle>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</jtitle><addtitle>Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics</addtitle><date>1999-11-01</date><risdate>1999</risdate><volume>60</volume><issue>5 Pt A</issue><spage>5327</spage><epage>5343</epage><pages>5327-5343</pages><issn>1063-651X</issn><eissn>1095-3787</eissn><abstract>Random walks with step number fluctuations are examined in n dimensions for when step lengths comprising the walk are governed by stable distributions, or by random variables having power-law tails. When the number of steps taken in the walk is large and uncorrelated, the conditions of the Lévy-Gnedenko generalization of the central limit theorem obtain. When the number of steps is correlated, infinitely divisible limiting distributions result that can have Lévy-like behavior in their tails but can exhibit a different power law at small scales. For the special case of individual steps in the walk being Gaussian distributed, the infinitely divisible class of K distributions result. The convergence to limiting distributions is investigated and shown to be ultraslow. Random walks formed from a finite number of steps modify the behavior and naturally produce an inner scale. The single class of distributions derived have as special cases, K distributions, stable distributions, distributions with power-law tails, and those characteristic of high and low frequency cascades. The results are compared with cellular automata simulations that are claimed to be paradigmatic of self-organized critical systems.</abstract><cop>United States</cop><pmid>11970402</pmid><doi>10.1103/PhysRevE.60.5327</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-651X |
ispartof | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 1999-11, Vol.60 (5 Pt A), p.5327-5343 |
issn | 1063-651X 1095-3787 |
language | eng |
recordid | cdi_proquest_miscellaneous_69527405 |
source | American Physical Society Journals |
title | Lévy random walks with fluctuating step number and multiscale behavior |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A34%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=L%C3%A9vy%20random%20walks%20with%20fluctuating%20step%20number%20and%20multiscale%20behavior&rft.jtitle=Physical%20review.%20E,%20Statistical%20physics,%20plasmas,%20fluids,%20and%20related%20interdisciplinary%20topics&rft.au=Hopcraft,%20K%20I&rft.date=1999-11-01&rft.volume=60&rft.issue=5%20Pt%20A&rft.spage=5327&rft.epage=5343&rft.pages=5327-5343&rft.issn=1063-651X&rft.eissn=1095-3787&rft_id=info:doi/10.1103/PhysRevE.60.5327&rft_dat=%3Cproquest_cross%3E69527405%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69527405&rft_id=info:pmid/11970402&rfr_iscdi=true |