Lévy random walks with fluctuating step number and multiscale behavior

Random walks with step number fluctuations are examined in n dimensions for when step lengths comprising the walk are governed by stable distributions, or by random variables having power-law tails. When the number of steps taken in the walk is large and uncorrelated, the conditions of the Lévy-Gned...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics Statistical physics, plasmas, fluids, and related interdisciplinary topics, 1999-11, Vol.60 (5 Pt A), p.5327-5343
Hauptverfasser: Hopcraft, K I, Jakeman, E, Tanner, R M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Random walks with step number fluctuations are examined in n dimensions for when step lengths comprising the walk are governed by stable distributions, or by random variables having power-law tails. When the number of steps taken in the walk is large and uncorrelated, the conditions of the Lévy-Gnedenko generalization of the central limit theorem obtain. When the number of steps is correlated, infinitely divisible limiting distributions result that can have Lévy-like behavior in their tails but can exhibit a different power law at small scales. For the special case of individual steps in the walk being Gaussian distributed, the infinitely divisible class of K distributions result. The convergence to limiting distributions is investigated and shown to be ultraslow. Random walks formed from a finite number of steps modify the behavior and naturally produce an inner scale. The single class of distributions derived have as special cases, K distributions, stable distributions, distributions with power-law tails, and those characteristic of high and low frequency cascades. The results are compared with cellular automata simulations that are claimed to be paradigmatic of self-organized critical systems.
ISSN:1063-651X
1095-3787
DOI:10.1103/PhysRevE.60.5327