Rapid Development of Hydrophilicity and Protein Adsorption Resistance by Polymer Surfaces Bearing Phosphorylcholine and Naphthalene Groups
In order to provide a protein adsorption resistant surface even when the surface was in contact with a protein solution under completely dry conditions, a new phospholipid copolymer, poly (2-methacryloyloxyethyl phosphorylcholine (MPC)-co-2-vinylnaphthalene (vN)) (PMvN), was synthesized. Poly(ethyle...
Gespeichert in:
Veröffentlicht in: | Langmuir 2008-09, Vol.24 (18), p.10340-10344 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In order to provide a protein adsorption resistant surface even when the surface was in contact with a protein solution under completely dry conditions, a new phospholipid copolymer, poly (2-methacryloyloxyethyl phosphorylcholine (MPC)-co-2-vinylnaphthalene (vN)) (PMvN), was synthesized. Poly(ethylene terephthalate) (PET) could be readily coated with PMvN by a solvent evaporation method. Dynamic contact angle measurements with water revealed that the surface was wetted very rapidly and had strong hydrophilic characteristics; moreover, molecular mobility at the surface was extremely low. When the surface came in contact with a plasma protein solution containing bovine serum albumin (BSA), the amounts of the plasma protein adsorbed on the dry surface coated with PMvN and that adsorbed on a dry surface coated with poly(MPC-co-n-butyl methacrylate) (PMB) were compared. Substantially lower protein adsorption was observed with PMvN coating. This is due to the rapid hydration behavior of PMvN. We concluded that PMvN can be used as a functional coating material for medical devices without any wetting pretreatment. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/la801017h |