Lovastatin biosynthetic genes of Aspergillus terreus are expressed differentially in solid-state and in liquid submerged fermentation

Molecular studies were performed to establish the causes of the superior lovastatin productivity of a novel solid-state fermentation (SSF) process, in relation with liquid submerged fermentation (SmF; 20 mg/g vs. 0.65 mg/ml). In SSF, biosynthetic genes lovE and lovF transcripts accumulated to high l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2008-05, Vol.79 (2), p.179-186
Hauptverfasser: Barrios-González, J, Baños, J. G, Covarrubias, A. A, Garay-Arroyo, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Molecular studies were performed to establish the causes of the superior lovastatin productivity of a novel solid-state fermentation (SSF) process, in relation with liquid submerged fermentation (SmF; 20 mg/g vs. 0.65 mg/ml). In SSF, biosynthetic genes lovE and lovF transcripts accumulated to high levels from day 1 to day 7. In this period, lovE transcript showed 4.6-fold higher accumulation levels (transcription) than the highest level detected in SmF (day 5). lovF transcript showed two-fold higher expression than the highest point in SmF. In SmF, the expression was only detected clearly on day 5 and, showing a 50% decrease, on day 7. These results show that the higher lovastatin production in SSF is related to a more intense transcription of these biosynthetic genes. A strong expression of gldB gene in lovastatin SSF indicated that Aspergillus terreus senses osmotic stress during the course of SSF, but not in SmF. However, when a liquid medium of identical concentration was used in SmF, lovastatin production decreased in 50%, while lovE and lovF transcripts accumulation was 20 and six-fold lower than in SSF; showing that physiology is different in SSF, and that osmotic stress alone is not responsible for the higher gene expression in SSF.
ISSN:0175-7598
1432-0614
DOI:10.1007/s00253-008-1409-2