Spectrum of stochastic evolution operators: local matrix representation approach
A matrix representation of the evolution operator associated with a nonlinear stochastic flow with additive noise is used to compute its spectrum. In the weak noise limit a perturbative expansion for the spectrum is formulated in terms of local matrix representations of the evolution operator center...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics Statistical physics, plasmas, fluids, and related interdisciplinary topics, 1999-10, Vol.60 (4 Pt A), p.3936-3941 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A matrix representation of the evolution operator associated with a nonlinear stochastic flow with additive noise is used to compute its spectrum. In the weak noise limit a perturbative expansion for the spectrum is formulated in terms of local matrix representations of the evolution operator centered on classical periodic orbits. The evaluation of perturbative corrections is easier to implement in this framework than in the standard Feynman diagram perturbation theory. The results are perturbative corrections to a stochastic analog of the Gutzwiller semiclassical spectral determinant computed to several orders beyond what has so far been attainable in stochastic and quantum-mechanical applications. |
---|---|
ISSN: | 1063-651X 1095-3787 |
DOI: | 10.1103/PhysRevE.60.3936 |