Variability of successive contractions subtracted from unfused tetanus of fast and slow motor units

Abstract Stimulation of motor units (MUs) with repeated pulses evokes tetanic contractions, which consist of overlapping mechanical responses. The summation of these responses into tetanus is a nonlinear process due to the dynamic changes in the amplitudes and time parameters of the successive compo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electromyography and kinesiology 2008-10, Vol.18 (5), p.741-751
Hauptverfasser: Raikova, R, Pogrzebna, M, Drzymała, H, Celichowski, J, Aladjov, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Stimulation of motor units (MUs) with repeated pulses evokes tetanic contractions, which consist of overlapping mechanical responses. The summation of these responses into tetanus is a nonlinear process due to the dynamic changes in the amplitudes and time parameters of the successive components. In order to study these changes, two MUs (one fast and one slow) of rat medial gastrocnemius muscle were stimulated with a progressively increasing number of pulses, from one ( i = 1) to sixteen ( i = 16) at a frequency of 15 Hz for the slow MU and 60 Hz for the fast MU. The individual responses were calculated by subtracting the ( i )th from the ( i + 1)th tetanus recording. The contractions obtained following subtraction were modeled using a novel 6-parameter analytical function. The main conclusions of this study are (1) the newly presented analytical function is able to precisely describe the variable shape of all subtracted experimental contractions; (2) the shapes of successive contractions are variable and the subtracted contractions differ from the individual twitches; (3) as the pulse number increases, the parameters of the subtracted contractions change in a different manner for the slow and fast MUs: for the slow MU, the maximal forces and the time parameters increase considerably up to the 4th response, after which they remain nearly constant or show only a slight increase; for the fast MU, the maximal forces and durations also increase, whereas the remaining time parameters initially increase and then maintain a constant level or decrease, which explains the sag phenomenon visible in the unfused tetanus of fast MUs.
ISSN:1050-6411
1873-5711
DOI:10.1016/j.jelekin.2007.02.010