Alterations in manganese, copper, and zinc contents, and intracellular status of the metal-containing superoxide dismutase in human mesothelioma cells

Molecular diagnostics and therapeutics of human mesothelioma using disease-related markers present major challenges in clinical practice. To identify biochemical alternations that would be markers of human mesothelioma, we measured the intracellular steady-state levels of biologically important trac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of trace elements in medicine and biology 2008-01, Vol.22 (3), p.248-255
Hauptverfasser: Hasegawa, Sumitaka, Koshikawa, Michiko, Takahashi, Isao, Hachiya, Misao, Furukawa, Takako, Akashi, Makoto, Yoshida, Satoshi, Saga, Tsuneo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Molecular diagnostics and therapeutics of human mesothelioma using disease-related markers present major challenges in clinical practice. To identify biochemical alternations that would be markers of human mesothelioma, we measured the intracellular steady-state levels of biologically important trace metals such as manganese (Mn), copper (Cu), and zinc (Zn) in a human mesothelial cell line, MeT-5A, and in five human mesothelioma cell lines (MSTO-211H, NCI-H226, NCI-H2052, NCI-H2452, ACC-MESO-1) by inductively coupled plasma-mass spectrometry (ICP-MS). We also aimed to investigate whether the alterations were related to the intracellular status of metal-containing superoxide dismutase (SOD). There were no significant differences in the contents of the trace metals among MeT-5A, MSTO-211H, and ACC-MESO-1 cells. However, each of the other three mesothelioma cell lines had a unique characteristic in terms of the intracellular amounts of the metals; NCI-H226 contained an extremely high level of Mn, an amount 7.3-fold higher than that in MeT-5A. NCI-H2052 had significantly higher amounts of Cu (3.4-fold) and Zn (1.3-fold) compared with MeT-5A. NCI-H2452 contained about 5.8-fold the amount of Cu and 2.5-fold that of Mn compared with MeT-5A. As for the intracellular levels of copper/zinc-SOD (Cu/Zn-SOD) and manganese-SOD (Mn-SOD), those of Cu/Zn-SOD were relatively unchanged among the cells tested, and no notable correlation with Cu or Zn contents was observed. On the other hand, all mesothelioma cells highly expressed Mn-SOD compared with MeT-5A, and a very high expression of the enzyme with a robust activity was observed in the two mesothelioma cells (NCI-H226, NCI-H2452) containing a large amount of Mn. In comparison with MeT-5A human mesothelial cells, some human mesothelioma cells had significantly higher amounts of Mn or Cu and one mesothelioma cell had a significantly higher amount of Zn. Interestingly, all mesothelioma cells overexpressed Mn-SOD compared with MeT-5A, and the cells whose Mn-SOD activity was increased contained higher amounts of Mn. It seemed that intracellular Mn content was positively correlated with Mn-SOD, suggesting that the intracellular Mn level is associated with Mn-SOD activity. These biochemical signatures could be potential disease-related markers of mesothelioma.
ISSN:0946-672X
1878-3252
DOI:10.1016/j.jtemb.2008.05.001