Expression of mitochondrial transcription factor A (TFAM) during porcine gametogenesis and preimplantation embryo development

Mitochondrial transcription factor A (TFAM) is responsible for stability, maintenance, and transcriptional control of mitochondrial DNA (mtDNA). We have studied the expression and distribution of TFAM in the gametes and preimplantation embryos of the domestic pig (Sus scrofa). We hypothesized that T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular physiology 2008-11, Vol.217 (2), p.529-543
Hauptverfasser: Antelman, J., Manandhar, G., Yi, Y.-J., Li, R., Whitworth, K.M., Sutovsky, M., Agca, C., Prather, R.S., Sutovsky, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mitochondrial transcription factor A (TFAM) is responsible for stability, maintenance, and transcriptional control of mitochondrial DNA (mtDNA). We have studied the expression and distribution of TFAM in the gametes and preimplantation embryos of the domestic pig (Sus scrofa). We hypothesized that TFAM is not present in the boar sperm mitochondria to reduce the possibility of paternal mtDNA propagation in the progeny. In contrast, we anticipated that Tfam gene is expressed in a developmental stage‐dependent manner in porcine oocytes and embryos. The appropriate TFAM band of 25 kDa was detected by Western blotting in ejaculated boar spermatozoa, as well as in porcine oocytes and zygotes. Boar sperm extracts also displayed several bands >25 kDa suggestive of post‐translational modification by ubiquitination, confirmed by affinity purification of ubiquitinated proteins. TFAM immunoreactivity was relegated to the sperm tail principal piece and sperm head in fully differentiated spermatozoa. The content of Tfam mRNA increased considerably from the germinal vesicle to blastocyst stage and also between in vitro fertilized and cultured blastocysts compared to in vivo‐derived blastocysts. TFAM protein accumulated in the oocytes during maturation and was reduced by proteolysis after fertilization. This pattern was not mirrored in parthenogenetically activated oocytes and zygotes reconstructed by SCNT, suggesting deviant processing of TFAM protein and transcript after oocyte/embryo manipulation. Thus, TFAM may exert a critical role in porcine gametogenesis and preimplantation embryo development. Altogether, our data on the role of TFAM in mitochondrial function and inheritance have broad implications for cell physiology and evolutionary biology. J. Cell. Physiol. 217: 529–543, 2008. © 2008 Wiley‐Liss, Inc.
ISSN:0021-9541
1097-4652
DOI:10.1002/jcp.21528