The role of cytokines in both the normal and malignant ovary
Normal ovarian tissue is rich in cytokines. Cytokines and chemokines are important in the physiology of ovarian function and of ovulation. Cytokines and chemokines may recruit cytokine-producing lymphocytes to the site of a developing follicle, and cytokines appear to play an important role in pre a...
Gespeichert in:
Veröffentlicht in: | Endocrine-related cancer 1999-03, Vol.6 (1), p.93-107 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Normal ovarian tissue is rich in cytokines. Cytokines and chemokines are important in the physiology of ovarian function and of ovulation. Cytokines and chemokines may recruit cytokine-producing lymphocytes to the site of a developing follicle, and cytokines appear to play an important role in pre and post follicle development. Most of the same cytokines that are found in normal ovarian tissue are also found in association with malignancy in contrast to their functions in normal tissues. It is reasonable to assume that the functions of cytokines associated with malignancy may serve to promote the unregulated growth if tumor cells and metastasis. It is also likely that cytokines produced by tumors will modulate immune responses that favor tumor progression. In the following review, we have highlighted those functions of cytokines that have been identified as having the most significant impact on tumor growth and development. By examining activities of these cytokines in normal and in malignant ovarian tissues, it is hoped that future possible avenues for investigation may be opened up and that the results of these investigations will lead to strategies that can modulate the production or the activity of the cytokines leading to the growth of tumors or their metastases. Such strategies now fall under the general discipline of bioimmunotherapy. This is an expanding discipline as more is learned about growth regulation in cancer, and with the availability and rapid development of new molecules for therapeutic approaches. |
---|---|
ISSN: | 1351-0088 1479-6821 |
DOI: | 10.1677/erc.0.0060093 |