Cell cycle and activation of CK2
Casein kinase 2 (CK2) is a highly conserved and ubiquitous eukaryotic Ser/Thr protein kinase. Genetic, biochemical, and cell biological studies have indicated the involvement of this enzyme in the control of cell proliferation and in signal transduction. The regulation of CK2 is not well defined, an...
Gespeichert in:
Veröffentlicht in: | Molecular and cellular biochemistry 2008-09, Vol.316 (1-2), p.49-55 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Casein kinase 2 (CK2) is a highly conserved and ubiquitous eukaryotic Ser/Thr protein kinase. Genetic, biochemical, and cell biological studies have indicated the involvement of this enzyme in the control of cell proliferation and in signal transduction. The regulation of CK2 is not well defined, and it has been considered a constitutively non-regulated protein kinase. However, we show that CK2 activation occurred during the progression of cell cycle in response to FBS stimuli of G₀ arrested cells. Importantly, we show that as the downstream target for CK2, the phosphorylation of eukaryotic translation-initiation factor eIF5 by CK2 may play a critical role in cell cycle progression. We find that eIF5 is associated with CK2 when the kinase activity is at the highest level in vivo, and is phosphorylated at Ser389 and Ser390 by CK2. Expression of eIF5 mutants that lack those phosphorylation sites reveals that these mutants have a dominant-negative effect on phosphorylation of endogenous eIF5, as well as a significant reduction in the formation of the mature complex, in the growth rate, and the expression of cell cycle-regulated proteins. Also, a pool of CK2 translocates into the nuclear fraction following its activation during the progression of the cell cycle. Consistent with these findings, we report that CK2 may be involved in the regulation of cell cycle progression through the phosphorylation of a key molecule for translation initiation and of nuclear substrates upon activation of CK2 by itself. |
---|---|
ISSN: | 0300-8177 1573-4919 |
DOI: | 10.1007/s11010-008-9823-4 |