Effect of Conjugation with Polypeptide Carrier on the Enzymatic Degradation of Herpes Simplex Virus Glycoprotein D Derived Epitope Peptide

Two conjugates with epitope peptide 278LLEDPVGTVA287 derived from glycoprotein D (gD-1) of Herpes simplex virus (HSV) were synthesized for analysis of the effect of conjugation on protection against enzymatic degradation. In this design, the turn-forming epitope core 281DPVG284 was positioned in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioconjugate chemistry 2008-08, Vol.19 (8), p.1652-1659
Hauptverfasser: Tugyi, Regina, Mezõ, Gábor, Gitta, Schlosser, Fellinger, Erzsébet, Andreu, David, Hudecz, Ferenc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two conjugates with epitope peptide 278LLEDPVGTVA287 derived from glycoprotein D (gD-1) of Herpes simplex virus (HSV) were synthesized for analysis of the effect of conjugation on protection against enzymatic degradation. In this design, the turn-forming epitope core 281DPVG284 was positioned in the central part of the peptide and elongated by three amino acids from the native sequence at both termini. Conjugation was achieved by the introduction of amide bond or thioether linkage between the C-terminal of the HSV peptide and the side chain of four lysine residues of the oligotuftsin derivative used as carrier molecule. We compared the proteolytic stability of the conjugates in diluted human sera as well as in rat liver lysosomal preparation. The data obtained in lysosomal preparation at two pH values (pH 3.5 and 5.0) show that the type of covalent bond between the carrier and the epitope peptide had no significant effect, as compared to the stability of the free, unconjugated peptide. Based on the identification of degradation fragments by mass spectrometry we found marked differences in the lengths and amounts of oligopeptides obtained. In contrast, in 10% and 50% human serum the conjugation provided full protection against enzymatic hydrolysis over 96 h, while the free peptide was decomposed quickly.
ISSN:1043-1802
1520-4812
DOI:10.1021/bc700469r