Secretion of bacteriolytic endopeptidase L5 of Lysobacter sp. XL1 into the medium by means of outer membrane vesicles

The Gram-negative bacterium Lysobacter sp. XL1 secretes various proteins, including bacteriolytic enzymes (L1-L5), into the culture medium. These proteins are able to degrade Gram-positive bacteria. The mechanism of secretion of extracellular proteins by Lysobacter sp. XL1 has not been studied hithe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FEBS journal 2008-08, Vol.275 (15), p.3827-3835
Hauptverfasser: Vasilyeva, Natalia V, Tsfasman, Irina M, Suzina, Natalia E, Stepnaya, Olga A, Kulaev, Igor S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Gram-negative bacterium Lysobacter sp. XL1 secretes various proteins, including bacteriolytic enzymes (L1-L5), into the culture medium. These proteins are able to degrade Gram-positive bacteria. The mechanism of secretion of extracellular proteins by Lysobacter sp. XL1 has not been studied hitherto. Electron microscopic investigations revealed the phenomenon of the formation of extracellular vesicles by Lysobacter sp. XL1. These vesicles contained components of the Lysobacter sp. XL1 outer membrane, and demonstrated bacteriolytic activity against Gram-positive and Gram-negative bacteria: Staphylococcus aureus 209-P and Erwinia marcescens EC1, respectively. Western blotting analysis with antibodies to homologous bacteriolytic endopeptidases L1 and L5 showed that endopeptidase L5 was secreted into the culture medium by means of vesicles, unlike its homolog, endopeptidase L1. When inside the vesicles, endopeptidase L5 actively lysed the Gram-negative bacterium Erwinia marcescens; outside the vesicles, it lost this ability. The secretion of bacteriolytic endopeptidase L5 through the outer membrane vesicles is of great biological significance: because of this ability, Lysobacter sp. XL1 can compete in nature with both Gram-positive and Gram-negative bacteria.
ISSN:1742-464X
1742-4658
DOI:10.1111/j.1742-4658.2008.06530.x