Amino-Modified Diamond as a Durable Stationary Phase for Solid-Phase Extraction

We report the formation of a highly stable amino stationary phase on diamond and demonstrate its use in solid-phase extraction (SPE). This process consists of spontaneous and self-limiting adsorption of polyallylamine (PAAm) from aqueous solution onto oxidized diamond. Thermal curing under reduced p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2008-08, Vol.80 (16), p.6253-6259
Hauptverfasser: Saini, Gaurav, Yang, Li, Lee, Milton L, Dadson, Andrew, Vail, Michael A, Linford, Matthew R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report the formation of a highly stable amino stationary phase on diamond and demonstrate its use in solid-phase extraction (SPE). This process consists of spontaneous and self-limiting adsorption of polyallylamine (PAAm) from aqueous solution onto oxidized diamond. Thermal curing under reduced pressure or chemical cross-linking with a diepoxide was shown to fix the polymer to the particles. The resulting adsorbents are stable under even extreme pH conditions (from at least pH 0−14) and significantly more stable than a commercially available amino SPE adsorbent. Coated diamond particles were characterized by X-ray photoelectron spectroscopy (XPS) and diffuse reflectance Fourier transform-infrared spectroscopy (DRIFT). Model silicon surfaces were characterized by spectroscopic ellipsometry and wetting. Solid-phase extraction was demonstrated using cholesterol, hexadecanedioic acid, and palmitoyloleoylphosphatidylcholine as analytes, and these results were compared to those obtained with commercially available materials. Breakthrough curves indicate that, as expected, porous diamond particles have higher analyte capacity than nonporous solid particles.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac800209c