The paraventricular nucleus of the thalamus alters rhythms in core temperature and energy balance in a state-dependent manner

Exposure to chronic stress facilitates activity within the hypothalamic–pituitary–adrenal (HPA) axis and is associated with enhanced neuronal activity in a discreet set of brain regions, including the posterior division of the paraventricular nucleus of the thalamus (pPVTh). Because HPA function is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research 1999-12, Vol.851 (1), p.66-75
Hauptverfasser: Bhatnagar, Seema, Dallman, Mary F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Exposure to chronic stress facilitates activity within the hypothalamic–pituitary–adrenal (HPA) axis and is associated with enhanced neuronal activity in a discreet set of brain regions, including the posterior division of the paraventricular nucleus of the thalamus (pPVTh). Because HPA function is intimately associated with systems that regulate metabolism, including core temperature and energy balance, we examined the effects of chronic stress on circadian rhythms in temperature, locomotor activity, body weight gain and food intake and adipose depot weights in rats. We also examined the potential role of the pPVTh in mediating these functions using ibotenate lesions of this nucleus. Chronic stress lowered the amplitude of core temperature rhythms, and lesions of the pPVTh blocked this effect in chronically stressed animals, but did not affect the amplitude of temperature rhythms in unstressed controls. In addition, lesions of the pPVTh increased cumulative food intake and overall body weight gain in controls but they increased subcutaneous white adipose depot weight in chronically stressed animals. Thus, the functional paraventricular nucleus of the thalamus appears to inhibit both temperature rhythms and specific white adipose depots only in chronically stressed animals. Together with our previous results, we show that the PVTh affects rhythms in food intake and body weight and is a nexus that differentially regulates core temperature rhythms/HPA activity/specific white adipose depots depending on the stress state of the animal.
ISSN:0006-8993
1872-6240
DOI:10.1016/S0006-8993(99)02108-3