Myristic acid analogs are inhibitors of Junin virus replication

The effects of two myristic acid analogs on Junin virus (JV) replication were investigated. The compounds chosen for the study were DL-2-hydroxymyristic acid (2OHM), an inhibitor of N-myristoyltransferase (NMT), which binds the enzyme and blocks protein myristoylation, and 13-oxamyristic acid (13OM)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbes and infection 1999-07, Vol.1 (8), p.609-614
Hauptverfasser: Cordo, Sandra M., Candurra, Nélida A., Damonte, Elsa B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effects of two myristic acid analogs on Junin virus (JV) replication were investigated. The compounds chosen for the study were DL-2-hydroxymyristic acid (2OHM), an inhibitor of N-myristoyltransferase (NMT), which binds the enzyme and blocks protein myristoylation, and 13-oxamyristic acid (13OM), a competitive inhibitor of NMT which incorporates into the protein instead of myristic acid. Both types of analogs achieved dose-dependent inhibition of viral multiplication at concentrations not affecting cell viability. The 50% inhibitory concentration values determined by a virus-yield inhibition assay for different strains of JV, including a human pathogenic strain, and for the related arenavirus, Tacaribe, were in the range 1.6 to 20.1 μM, with 13OM as the most active compound. From time of addition and removal experiments, it can be concluded that both analogs inhibit a late stage in the JV replicative cycle, and their effect was partially reversible. The cytoplasmic and surface expression of JV glycoproteins was not affected in the presence of the compounds, as revealed by immunofluorescence staining, suggesting that JV glycoprotein myristoylation would not be essential for the intracellular transport of the envelope proteins, but it may have an important role in their interaction with the plasma membrane during virus budding.
ISSN:1286-4579
1769-714X
DOI:10.1016/S1286-4579(99)80060-4