Peptides crossing the blood–brain barrier: some unusual observations
An interactive blood–brain barrier (BBB) helps regulate the passage of peptides from the periphery to the CNS and from the CNS to the periphery. Many peptides cross the BBB by simple diffusion, mainly explained by their lipophilicity and other physicochemical properties. Other peptides cross by satu...
Gespeichert in:
Veröffentlicht in: | Brain research 1999-11, Vol.848 (1-2), p.96-100 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An interactive blood–brain barrier (BBB) helps regulate the passage of peptides from the periphery to the CNS and from the CNS to the periphery. Many peptides cross the BBB by simple diffusion, mainly explained by their lipophilicity and other physicochemical properties. Other peptides cross by saturable transport systems. The systems that transport peptides into or out of the CNS can be highly specific, transporting MIF-1 but not Tyr–MIF-1, PACAP38 but not PACAP27, IL-1 but not IL-2, and leptin but not the smaller ingestive peptides NPY, orexin A, orexin B, CART (55–102[Met(O)67]), MCH, or AgRP(83–132). Although the peptides EGF and TGF-α bind to the same receptor, only EGF enters by a rapid saturable transport system, suggesting that receptors and transporters can represent different proteins. Even the polypeptide NGF enters faster than its much smaller subunit β-NGF. The saturable transport of some compounds can be upregulated, like TNF-α in EAE (an animal model of multiple sclerosis) and after spinal cord injury, emphasizing the regulatory role of the BBB. As has been shown for CRH, saturable transport from brain to blood can exert effects in the periphery. Thus, the BBB plays a dynamic role in the communication of peptides between the periphery and the CNS. |
---|---|
ISSN: | 0006-8993 1872-6240 |
DOI: | 10.1016/S0006-8993(99)01961-7 |