Modulation of paired-pulse responses in the dentate gyrus: effects of prenatal protein malnutrition
Since our major hypothesis is that prenatal protein malnutrition significantly affects hippocampal neuroplasticity, this study examined the effects of prenatal protein malnutrition on the modulation of dentate granule cell excitability in freely moving rats at 15, 30 and 90 days of age across the vi...
Gespeichert in:
Veröffentlicht in: | Brain research 1999-12, Vol.849 (1), p.45-57 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Since our major hypothesis is that prenatal protein malnutrition significantly affects hippocampal neuroplasticity, this study examined the effects of prenatal protein malnutrition on the modulation of dentate granule cell excitability in freely moving rats at 15, 30 and 90 days of age across the vigilance states of quiet waking (QW), slow-wave sleep (SWS) and rapid eye movement (REM) sleep. Using paired-pulse stimulation, the paired-pulse index (PPI), a measure of the type and degree of modulation of dentate granule cell excitability elicited by stimulation of the medial perforant path, was obtained for each vigilance state at each stage of development. Four specific measures of granule cell excitability were computed, namely, PPI using both population spike amplitude (PSA) and EPSP slope measures, absolute values of PSA
1 and EPSP
1 slope. PPI values obtained at 15, 30 and 90 days of age, however, were altered during normal ontogenetic development, but not by vigilance state. At 15 days of age, the malnourished group exhibits greater early inhibition of the PPI using the PSA measure at IPIs between 20 and 30 ms regardless of vigilance state, while at 30 days of age, the malnourished group exhibits greater facilitation at IPIs between 50 and 70 ms during QW and SWS, but not during REM sleep. In the control adult (PND90) and juvenile (PND30) animal, PSA
1 values are significantly higher during SWS than in QW or REM sleep. However, for the younger malnourished animals (PND15 and PND30), PSA
1 values were found to be significantly greater during REM sleep rather than SWS. Therefore, as the animal matures, there appears to be a shift in vigilance state dependent synaptic transmission through the hippocampal trisynaptic circuit from REM sleep to SWS in both control and malnourished animals, with the change occurring later in malnourished animals when compared to control ones. Furthermore, our findings suggests that prenatal protein malnutrition significantly alters modulation of dentate granule cell excitability (i.e., PPI values using the PSA measure) during the earlier stages of development but not in adulthood. |
---|---|
ISSN: | 0006-8993 1872-6240 |
DOI: | 10.1016/S0006-8993(99)02071-5 |