PEGMA/MMA Copolymer Graftings: Generation, Protein Resistance, and a Hydrophobic Domain

We synthesized various graft copolymer films of poly(ethylene glycol) methacrylate (PEGMA) and methyl methacrylate (MMA) on silicon to examine the dependency of protein−surface interactions on grafting composition. We optimized atom transfer radical polymerizations to achieve film thicknesses from 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2008-08, Vol.24 (15), p.8151-8157
Hauptverfasser: Stadler, Volker, Kirmse, Robert, Beyer, Mario, Breitling, Frank, Ludwig, Thomas, Bischoff, F. Ralf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We synthesized various graft copolymer films of poly(ethylene glycol) methacrylate (PEGMA) and methyl methacrylate (MMA) on silicon to examine the dependency of protein−surface interactions on grafting composition. We optimized atom transfer radical polymerizations to achieve film thicknesses from 25 to 100 nm depending on the monomer mole fractions, and analyzed the resulting surfaces by X-ray photoelectron spectroscopy (XPS), ellipsometry, contact angle measurements, and atomic force microscopy (AFM). As determined by XPS, the stoichiometric ratios of copolymer graftings correlated with the concentrations of provided monomer solutions. However, we found an unexpected and pronounced hydrophobic domain on copolymer films with a molar amount of 10−40% PEGMA, as indicated by advancing contact angles of up to 90°. Nevertheless, a breakdown of the protein-repelling character was only observed for a fraction of 15% PEGMA and lower, far in the hydrophobic domain. Investigation of the structural basis of this exceptional wettability by high-resolution AFM demonstrated the independence of this property from morphological features.
ISSN:0743-7463
1520-5827
DOI:10.1021/la800772m