Renal N(epsilon)-carboxymethyllysine deposition after kidney transplantation

Accumulation of advanced glycation end products, that is, N(epsilon)-carboxymethyllysine (CML), induces oxidative stress and inflammation, and is present in chronic renal failure. Proximal tubular cells (PTCs) take up advanced glycation end products-bound proteins by apical megalin-receptors and deg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transplantation 2008-07, Vol.86 (2), p.330-335
Hauptverfasser: Baumann, Marcus, Caron, Marjolein, Schmaderer, Christoph, Schulte, Christian, Viklicky, Ondreij, von Weyhern, Claus Werner Hann, Lutz, Jens, Heemann, Uwe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accumulation of advanced glycation end products, that is, N(epsilon)-carboxymethyllysine (CML), induces oxidative stress and inflammation, and is present in chronic renal failure. Proximal tubular cells (PTCs) take up advanced glycation end products-bound proteins by apical megalin-receptors and degrade them. We hypothesized that renal transplant dysfunction affects renal CML homeostasis. Therefore, tubular and glomerular deposition of CML was investigated in a rat transplantation model, and in human allograft biopsies. Fisher 344 kidneys were orthotopically transplanted into Lewis recipients. Recipients were treated with placebo, angiotensin II type 1 receptor blocker (candsartan 5 mg/kg/day), or calcium channel blocker (lacidipine 1 mg/kg/day) more than 28 weeks posttransplantation. Grafts were harvested at 12, 20, and 28 weeks posttransplantation. Sixty-two renal transplant patients underwent graft biopsy because of creatinine increase. Biopsies were graded according to interstitial fibrosis and tubular atrophy. N(epsilon)-carboxymethyllysine and megalin were semiquantitatively investigated in rats and humans using immunohistochemistry. In Fisher grafts, the development of transplant dysfunction was associated with a longitudinal increase in CML deposition in PTCs (week 12: 1.0+/-0.0, week 20: 1.5+/-0.3, week 28: 2.1+/-0.2, P
ISSN:0041-1337
DOI:10.1097/TP.0b013e31817ef7a5