Lineage-Dependent Collagen Expression and Assembly during Osteogenic or Chondrogenic Differentiation of a Mesoblastic Cell Line
The mesoblastic clone, C1, behaves as a tripotential progenitor able to self-renew and to differentiate toward osteogenesis, chondrogenesis, or adipogenesis in response to specific inducers. In this study, expression and deposition by the C1 cells of essential components of the extracellular matrix,...
Gespeichert in:
Veröffentlicht in: | Experimental cell research 1999-12, Vol.253 (2), p.385-395 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The mesoblastic clone, C1, behaves as a tripotential progenitor able to self-renew and to differentiate toward osteogenesis, chondrogenesis, or adipogenesis in response to specific inducers. In this study, expression and deposition by the C1 cells of essential components of the extracellular matrix, collagens type I, II, III, V, XI, VI, IX, and X were followed along the osteogenic and chondrogenic pathways, through biochemical, immunochemical, and electron microscopy analyses. Implementation of each program involves profiles of collagen synthesis and matrix assembly close to those documented in vivo. Depending on the applied inducers, cells adopt a defined identity and, controls acting at transcriptional and posttranslational levels adapt the set of deposited collagens to one particular cell fate. Osteogenic C1 cells selectively build a type I collagen matrix also containing type III, V, and XI collagens but selectively exclude type II collagen. Chondrogenic C1 cells first elaborate a type II collagen network and then acquire hypertrophic chondrocyte properties while assembling a type X collagen matrix as in the growth plate. This study provides an example of how a mesoblastic cell line can develop, in vitro, each of its genetic programs up to terminal differentiation. Intrinsic factors and time-dependent cell-matrix interactions might, as in vivo, underline the implementation of an entire differentiation program. |
---|---|
ISSN: | 0014-4827 1090-2422 |
DOI: | 10.1006/excr.1999.4704 |