Design and synthesis of novel alpha(1)(a) adrenoceptor-selective antagonists. 2. Approaches to eliminate opioid agonist metabolites via modification of linker and 4-methoxycarbonyl-4-phenylpiperidine moiety

We have previously described compound 1a as a high-affinity subtype selective alpha(1a) antagonist. In vitro and in vivo evaluation of compound 1a showed its major metabolite to be a mu-opioid agonist, 4-methoxycarbonyl-4-phenylpiperidine (3). Several dihydropyrimidinone analogues were synthesized w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 1999-11, Vol.42 (23), p.4778-4793
Hauptverfasser: Murali Dhar, T G, Nagarathnam, D, Marzabadi, M R, Lagu, B, Wong, W C, Chiu, G, Tyagarajan, S, Miao, S W, Zhang, F, Sun, W, Tian, D, Shen, Q, Zhang, J, Wetzel, J M, Forray, C, Chang, R S, Broten, T P, Schorn, T W, Chen, T B, O'Malley, S, Ransom, R, Schneck, K, Bendesky, R, Harrell, C M, Vyas, K P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have previously described compound 1a as a high-affinity subtype selective alpha(1a) antagonist. In vitro and in vivo evaluation of compound 1a showed its major metabolite to be a mu-opioid agonist, 4-methoxycarbonyl-4-phenylpiperidine (3). Several dihydropyrimidinone analogues were synthesized with the goal of either minimizing the formation of 3 by modification of the linker or finding alternative piperidine moieties which when cleaved as a consequence of metabolism would not give rise to mu-opioid activity. Modification of the linker gave several compounds with good alpha(1a) binding affinity (K(i) = < 1 nM) and selectivity (>300-fold over alpha(1b) and alpha(1d)). In vitro analysis in the microsomal assay revealed these modifications did not significantly affect N-dealkylation and the formation of the piperidine 3. The second approach, however, yielded several piperidine replacements for 3, which did not show significant mu-opioid activity. Several of these compounds maintained good affinity at the alpha(1a) adrenoceptor and selectivity over alpha(1b) and alpha(1d). For example, the piperidine fragments of (+)-73 and (+)-83, viz. 4-cyano-4-phenylpiperidine and 4-methyl-4-phenylpiperidine, were essentially inactive at the mu-opioid receptor (IC(50) > 30 microM vs 3 microM for 3). Compounds (+)-73 and (+)-83 were subjected to detailed in vitro and in vivo characterization. Both these compounds, in addition to their excellent selectivity (>880-fold) over alpha(1b) and alpha(1d), also showed good selectivity over several other recombinant human G-protein coupled receptors. Compounds (+)-73 and (+)-83 showed good functional potency in isolated human prostate tissues, with K(b)s comparable to their in vitro alpha(1a) binding data. In addition, compound (+)-73 also exhibited good uroselectivity (DBP K(b)/IUP K(b) > 20-fold) in the in vivo experiments in dogs, similar to 1a.
ISSN:0022-2623
DOI:10.1021/jm990201h