Photovoltage Mechanism for Room Light Conversion of Citrate Stabilized Silver Nanocrystal Seeds to Large Nanoprisms
We investigate the photoconversion of aqueous 8 nm Ag nanocrystal seeds into 70 nm single crystal plate nanoprisms. The process relies on the excitation of Ag surface plasmons. The process requires dioxygen, and the transformation rate is first-order in seed concentration. Although citrate is necess...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2008-07, Vol.130 (29), p.9500-9506 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the photoconversion of aqueous 8 nm Ag nanocrystal seeds into 70 nm single crystal plate nanoprisms. The process relies on the excitation of Ag surface plasmons. The process requires dioxygen, and the transformation rate is first-order in seed concentration. Although citrate is necessary for the conversion, and is consumed, the transformation rate is independent of citrate concentration. We propose a mechanism that accounts for these features by coupling the oxidative etching of the seed and the subsequent photoreduction of aqueous Ag+. The reduced Ag deposits onto a Ag prism of specific size that has a cathodic photovoltage resulting from plasmon “hot hole” citrate photo-oxidation. This photovoltage mechanism also explains recent experimental results involving single and dual wavelength irradiation and the core/shell synthesis of Ag layers on Au seeds. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja8018669 |