Lenalidomide Enhances Natural Killer Cell and Monocyte-Mediated Antibody-Dependent Cellular Cytotoxicity of Rituximab-Treated CD20+ Tumor Cells

Purpose: Lenalidomide has significant activity in myelodysplastic syndromes, multiple myeloma, and non-Hodgkin's lymphoma (NHL). In previous studies, natural killer (NK) cell expansion by lenalidomide was shown to enhance the cytotoxic effect of rituximab. This study assessed the ability of len...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical cancer research 2008-07, Vol.14 (14), p.4650-4657
Hauptverfasser: Wu, Lei, Adams, Mary, Carter, Troy, Chen, Roger, Muller, George, Stirling, David, Schafer, Peter, Bartlett, J Blake
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose: Lenalidomide has significant activity in myelodysplastic syndromes, multiple myeloma, and non-Hodgkin's lymphoma (NHL). In previous studies, natural killer (NK) cell expansion by lenalidomide was shown to enhance the cytotoxic effect of rituximab. This study assessed the ability of lenalidomide to enhance antibody-dependent cellular cytotoxicity (ADCC) in rituximab-treated NHL cell lines and primary tumor cells from patients with B-cell chronic lymphocytic leukemia (B-CLL) in vitro . Experimental Design: An in vitro ADCC system was used to assess the ability of lenalidomide to enhance human NK cell and monocyte function in response to rituximab. Results: Lenalidomide directly enhanced IFN-γ production via Fc-γ receptor-mediated signaling in response to IgG. It was also a potent enhancer of NK cell-mediated and monocyte-mediated tumor cell ADCC for a variety of rituximab-treated NHL cell lines in vitro , an effect that was dependent on the presence of antibody and either interleukin-2 or interleukin-12. Lenalidomide also enhanced the ability of NK cells to kill primary tumor cells derived from three patients with B-CLL who have been treated previously with fludarabine plus cyclophosphamide. Enhanced NK cell ADCC was associated with enhanced granzyme B and Fas ligand expression and could be inhibited by a granzyme B inhibitor and partially inhibited by antibody to FasL. Enhanced NK cell Fc-γ receptor signaling is associated with enhanced phosphorylated extracellular signal-related kinase levels leading to enhanced effector function. Conclusions: These findings suggest that lenalidomide has the potential to enhance the rituximab-induced killing of NHL cell lines and primary B-cell chronic lymphocytic leukemia cells via a NK cell-mediated and monocyte-mediated ADCC mechanism in vitro , providing a strong rationale for the combination of lenalidomide with IgG1 antibodies to target tumor-specific antigens in patients with cancer.
ISSN:1078-0432
1557-3265
DOI:10.1158/1078-0432.CCR-07-4405