Physiological aspects of exocytosis in chromaffin cells of the adrenal medulla

The adrenal medulla is composed principally of groups of adrenergic and noradrenergic chromaffin cells, with minor populations of small intensely fluorescent cells and ganglionic neurones. Different molecular stimuli evoke distinct secretory events in the gland, involving the release of either adren...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta physiologica Scandinavica 1999-10, Vol.167 (2), p.89-97
Hauptverfasser: AUNIS, D, LANGLEY, K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The adrenal medulla is composed principally of groups of adrenergic and noradrenergic chromaffin cells, with minor populations of small intensely fluorescent cells and ganglionic neurones. Different molecular stimuli evoke distinct secretory events in the gland, involving the release of either adrenaline or noradrenaline together with various neuroactive peptides. The nature of the secretory response can be controlled at a central level or regulated locally within the gland. Specific innervation patterns to the different types of chromaffin cell have been implicated in central regulatory mechanisms, while several explanations for regulating secretion locally have been proposed. The differential distribution of various types of receptors between cell phenotypes, such as muscarinic or nicotinic acetylcholine receptors, histamine receptors, angiotensin receptors and different classes of opiate receptors between the two principal chromaffin cell populations could be involved in local control. In addition exocytosis parameters could be modulated differently in adrenergic and noradrenergic cells by phenotype‐specific mechanisms, possibly involving molecules like Growth Associated Protein‐43, Synaptosomal Associated Protein‐25 isoforms or the p11 annexin subunit. The distribution of the various types of calcium channels is also known to vary between chromaffin cell subtypes. This short review examines possible ways in which specific innervation patterns in the adrenal gland could be programmed and discusses exocytosis mechanisms that could differ between chromaffin cell phenotypes. Data reviewed here suggest that the adrenal medulla should no longer be viewed as a homogeneous entity but as consisting of an ensemble of individual cell subpopulations each with a distinct secretory response that could in part reflect its local history.
ISSN:0001-6772
1365-201X
DOI:10.1046/j.1365-201x.1999.00580.x