In vivo three-dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging

The in situ assessment of axonal projections of the brain has been severely limited by the lack of noninvasive techniques to study this type of anatomy. We show here that in vivo three‐dimensional (3D) reconstruction of axonal projections can be achieved using a rapid 3D high‐resolution diffusion‐we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 1999-12, Vol.42 (6), p.1123-1127
Hauptverfasser: Xue, Rong, van Zijl, Peter C.M., Crain, Barbara J., Solaiyappan, Meiyappan, Mori, Susumu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The in situ assessment of axonal projections of the brain has been severely limited by the lack of noninvasive techniques to study this type of anatomy. We show here that in vivo three‐dimensional (3D) reconstruction of axonal projections can be achieved using a rapid 3D high‐resolution diffusion‐weighted imaging technique combined with a recently designed fiber reconstruction algorithm. As a first example, neuronal pathways in the rat brain were probed. Eight well‐known fiber projections; genu and splenium of corpus callosum, internal and external capsule, fimbria, anterior commissure, optic tract, and stria terminalis were tracked and shown to be in agreement with the location of these known axonal projections. The experiment took 2 hr and shorter times should be possible in the clinical situation. By combining anisotropy information with fiber tracking, the anisotropy of individual projections was also documented. Magn Reson Med 42:1123–1127, 1999. © 1999 Wiley‐Liss, Inc.
ISSN:0740-3194
1522-2594
DOI:10.1002/(SICI)1522-2594(199912)42:6<1123::AID-MRM17>3.0.CO;2-H